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SUMMARY

An improved anisotropic model for the dissipation rate—�—of the turbulent kinetic energy (k), to be
used together with a non-linear pressure-strain correlations model, is proposed. Experimental data from
the open literature for two con�ned turbulent swirling �ows are used to assess the performance of the
proposed model in comparison to the standard � transport equation and to a linear approach to model
the pressure-strain term that appears in the exact equations for the Reynolds-stress tensor. For the less
strongly swirling �ow the predictions show much more sensitivity to the � transport equation than to
the pressure-strain model. In opposition, for the more strongly swirling �ow, the results show that
the predictions are much sensitive to the pressure-strain model. Nevertheless, the improved � transport
equation together with the non-linear pressure strain model yield predictions in good agreement with
experiments in both studied cases. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Reynolds stress transport model; turbulence; anisotropic dissipation; pressure strain
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1. INTRODUCTION

Con�ned swirling �ows are present in a vast range of industrial engineering applications,
such as combustion chambers, in which turbulent swirl is likely to exert a signi�cant in�u-
ence on combustion performance, e�ciency and pollutants formation. The ability to predict
the characteristics and the properties of con�ned swirling �ows is, therefore, of major im-
portance. Although Computational Fluid Dynamics (CFD) predictive usually include many
physical and mathematical models to simulate all the phenomena involved inside combus-
tion chambers (turbulence, combustion and radiation), the turbulence model deserves par-
ticular attention as it describes the �ow structure that, in turn, strongly in�uences all the
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other determinant parameters. Therefore, the capability of a CFD code to predict accu-
rately swirling, turbulent and reacting �ows partly lies on the potential of its turbulence
model.
The k–� model [1] has been widely used in the computation of combusting turbulent �ows

[2–4]. Although this model has proved to perform well for simple �ow cases, it is well
known that its behaviour for complex swirling �ows is rather poor. This �aw may emerge
from the use of the isotropic eddy viscosity concept in the de�nition of the Reynolds stresses.
In reality, swirling �ows are usually highly anisotropic. The Reynolds stress transport model
(hereafter RSTM), in turn, provides a direct route to evaluate the turbulent stresses through the
solution of their respective transport equations, rather than using the isotropic eddy viscosity
approach, which makes of it a more robust model. This model did not, however, cover all the
de�ciencies of the k–� model in the prediction of swirling �ows [5–7]. Indeed, it is presently
well established that both the equation for the dissipation rate of k and the pressure-strain
term lack of modelling improvements and are a source of inaccuracy in predicting turbulent
quantities [8–10].
Both k–� model and standard RSTM make recourse to a transport equation for the turbulent

kinetic energy dissipation rate, �, as primarily presented for high Reynolds numbers �ows. It
has been argued in the open literature that mean shear terms have no proper place in an �
transport equation, since the dissipation process concerns to �ne-grained turbulence. In fact,
and according to Reference [8], as the mean shear deforms the large-scale eddies, so must
anisotropies in the large-scale eddies be expected to stretch eddies to somewhat �ner scales
and thus contribute to the rate of the energy cascade across the spectrum. Therefore, some
of the stress anisotropy invariants ought to appear in the � transport equation. In their work
[11], the authors proposed to model the source term of the � transport equation solely in terms
of the turbulence anisotropy second invariant. Although well argued, the idea did not prove
to be very helpful when applied to real �ows.
Turbulence comprises �uctuating motions with a spectrum of sizes and time scales. Dif-

ferent turbulent interactions are known to be associated with the di�erent parts of the energy
spectrum. At high Reynolds numbers the energy in turbulent �ows is produced by mean strain
at low wave numbers and it is dissipated at considerably higher wave numbers characteristic
of the dissipative eddies. The rate of energy transfer from productive large-eddies to dissipa-
tive small-eddies depends on the production itself and is, therefore, subjected to the degree
of the anisotropy of the �ow. Based on this concept, where the process of turbulent kinetic
energy transfer from large-scale to small-scale eddies is controlled by anisotropy in swirling
�ows, a new anisotropic dissipation rate model is proposed herein. With this new approach,
a modi�ed source term of the � transport equation based on physical reasoning is obtained.
This modi�cation establishes that anisotropy is responsible for the turbulence transfer from
large-scale to small-scale eddies in regions of predominant anisotropic turbulence. On the
other hand, in �ow regions where turbulence is predominantly isotropic, isotropy controls
the turbulent kinetic energy transfer through the cascade and this is also taken into account
in the new approach.
Another �aw of the standard RSTM is the modelling of the pressure strain term of the

Reynolds stresses transport equations. An advanced modelling strategy for the pressure-strain
term was proposed [12] (SSG hereafter), which is non-linear in the Reynolds stresses. Such
model has already yielded accurate results in di�erent types of �ows: both for wall-bounded
�ows without the use of empirical wall-re�ection terms [13] and for free turbulent jets with
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and without swirl [14]. This model is also implemented in the present work together with the
new dissipation rate transport equation mentioned above.
Two isothermal �ows in axially symmetric model combustors, one exhibiting a single in-

let and the other a double concentric inlet system, which were both experimentally inves-
tigated, [15] and [16] respectively, are simulated in the present work. The predicted results
are compared against the corresponding experimental data. For comparison purposes against
the presently proposed model, predictions are also performed making recourse to another two
Reynolds stresses transport models: the standard RSTM [17], LRR hereafter, that was later
improved [18], and the above-mentioned standard SSG model. The performance of the dif-
ferent models in predicting the referred con�ned swirling �ows is analysed. The results show
that the new proposed approach for the � transport equation, together with the SSG pressure-
strain modelling, yielded predicted results with a considerable enhancement in accuracy for
relatively weakly swirling �ows (swirl number of 0.5, the swirl number S being de�ned by
S=

∫ R
0 UWr

2 dr=R
∫ R
0 U

2r dr). For strongly swirling �ows (swirl number of 2.25) the improve-
ment in accuracy of the results emerges mainly from the use of the SSG model and the new
proposed approach for the � transport equation showed to have a pale contribution to the
accuracy enhancement.

2. THE MATHEMATICAL AND PHYSICAL MODELLING

With the Reynolds decomposition, the mean transport equation for momentum in a steady-state
�ow can be derived from the instantaneous Navier–Stokes equations and may be expressed
in tensor notation as

@
@xj
(�UiUj)= − @p

@xi
+
@
@xj

(
�
@Ui
@xi

− �u′iu′j
)

(1)

On the right hand side of the previous equation the correlations between velocity �uctuations,
the Reynolds stresses, are unknown. Further di�erential equations for the turbulent correlations
can be obtained. However, these equations contain other correlations of higher (third) order.
Among the several possibilities to close the system of the time-averaged equation (1) the
RSTM was chosen in the present work due to its higher potential to correctly simulate the
anisotropy of turbulent swirling �ows, as mentioned in the introduction.
RSTM solves transport equations for each component of the Reynolds stresses (u′iu′j) and

it has been recognized as the most comprehensive description of turbulent �ows that can be
employed for practical computations with the present generation of computers.
The exact equations governing the transport of Reynolds stresses in a turbulent incompress-

ible �uid �ow may be written as (see, e.g. Reference [17]):
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where �ij is the Kronecker operator.
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Table I. Constants for the standard Reynolds stress transport turbulence model (LRR).

C1 C2 C′
1 C′

2 Cs C� C�1 C�2

3.0 0.5 0.75 0.5 0.22 0.15 1.4 1.8

A compact form of the above equation can be written as: Cij=Pij+�ij+Dij−�ij; Cij; Pij;�ij ;
Dij, and �ij being, respectively, the convection, the production, the pressure-strain correlation,
the di�usion and the dissipation terms.
Based on a suggestion from a previous work [18], the di�usion term Dij is modelled

herein assuming that the di�usion transport rate of the Reynolds stresses is proportional to
their gradients, that is, Dij=(@=@xk)

((
��mk + �Csu′ku′mk=�

)
@u′iu′j=@xm

)
, where Cs is a model

constant.
The dissipation term (�ij) is modelled by assuming the dissipative motion as isotropic (see,

e.g. Reference [17]), yielding �ij= 2
3���ij. This dissipative term corresponds to the largest

wave numbers in the energy spectrum of turbulence where viscous e�ects of dissipation are
dominant.
The modelling of the pressure-strain term runs (after Reference [9]):

�ij=�ij;1 + �ij;2 + �ij; w (3)

This term, however, still remains a subject of most controversy and experimental work is
still being performed presently in order to have insight on the physical process of such
phenomenon. A comprehensive model is usually decomposed into three parts, as in the exact
Poisson equation for the pressure �uctuations. According to other studies (e.g. Reference
[9]), the �rst two terms, �ij;1 and �ij;2, are strictly the volume integrals of the two point
correlations, whereas the third term, �ij; w, represents the surface integral and is e�ective only
in the vicinity of a solid wall or at an interface surface. Various approaches for modelling
each of those terms were put forward over the years. Since the ultimate objective of this
study is to propose a model which will be applicable to con�ned swirling �ows encountered
in practical applications, attention is con�ned to the linear model LRR and to the quadratic
model SSG.
The LRR model: This model is essentially composed by the sub-models described below.
The �rst term is the return to isotropy term and it is calculated from the following approach

[19]: �ij;1= − C1�(�=k)(u′iu′j − 2
3k�ij). The second term is the rapid term and it is calculated

from [20]: �ij;2= − C2�(Pij − 1
3P�ij).

The last term refers to the wall boundary modi�cation, which consists of separate corrections
to be made to �ij;1 and �ij;2. These corrections are expressed by (see, e.g. References [21, 22]),
�1ij; w=C

′
1�(�=k)(u

′
lu′mnlnm − 3

2u
′
lu

′
jnlni − 3

2u
′
lu

′
inlnj)f and �

2
ij; w=C

′
2(�lm;2nlnm�ij − 3

2�il;2nlni −
3
2�jl;2nlnj)f, where f is the wall damping function. This function has two components,
fx=C�k3=2=(��xn) and fy=C�k3=2=(��yn); C� being a constant and xn and yn the axial and
radial distances to the wall, respectively.
The constants used for the LRR model in the present study are those used previously in a

similar work [23] and are listed in Table I.
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Table II. Constants for the Reynolds stress transport turbulence model (SSG).

C1 C2 C∗
1 C3 C∗

3 C4 C5 Cs C� C�1 C�2

3.4 4.2 1.8 0.8 0.325 1.25 0.4 0.22 0.183 1.44 1.83

The SSG model: In the SSG model, the pressure-strain correlation term, �ij, is modelled
after the application of various kinematics constraints yielding [12]:

�ij =−(C1�+ C∗
1 P)bij + C2�(bikbkj − 1

3bklbkl�ij) + (C3 − C∗
3A

1=2
2 )kSij

+C4k(bikSjk + bjkSik − 2
3bklSkl�ij) + C5k(bikWjk + bjkWik) (4)

In Equation (4), P= − u′iu′j(@Ui=@xj) is the turbulent kinetic energy production, A2=4bijbij
is the second invariant of anisotropy, bij=u′iu′j=u′qu′q − �ij=3 is the Reynolds stress anisotropic
tensor, the mean rate of the strain tensor is Sij=1=2(@Ui=@xj+@Uj=@xi) and Wij=1=2(@Ui=@xj−
@Uj=@xi) is the mean vorticity tensor.
The SSG model constants are listed in Table II ([14]).
The transport equation of �: The turbulent kinetic energy dissipation rate, �, appearing

in the modelling of the di�usion, redistribution and dissipation of the Reynolds stresses, is
determined from its own transport equation which takes the following tensor notation form:

@
@xk
(Uk�)=C�

@
@xk

(
k
�
u′ku

′
l
@�
@xi

)
+
�
k
(C�1P − C�2�) (5)

It is well known that the dissipation rate of the turbulent kinetic energy is not properly
modelled, being the most probable source of inaccuracies in predicting turbulent quantities. In
previous works (References [6, 7]) it was found that the turbulent intensity obtained from the
RSTM was much smaller in regions of the �ow �eld predominantly isotropic than that yielded
by using the isotropic k–� model. This RSTM feature yields exaggerated radial gradients of the
chemical species and the temperature pro�les for isotropic turbulent regions, when compared
to the corresponding experimental data. The reason for that may come from the inadequate
modelling of the turbulence energy dissipation rate. In fact, Equation (5) overestimates the
value of the dissipation rate of the turbulent kinetic energy. As a consequence, there is an
underestimation of the turbulence intensity and a lower level of the turbulent mixing rate is
estimated in such regions where turbulence is predominantly isotropic.
Numerous corrections and alternatives to the form of this equation have been proposed over

the years [24–26]. Unfortunately, none of these approaches appears to have been tested over
a wide range of �ows, and, in the cases that tests were performed, those approaches have
yielded worse predictions than the standard model.
An improvement to the equation for the transport of the dissipation rate of the turbulent

kinetic energy, �, was later recommended [8]. This improvement consisted of the inclusion
of the turbulence anisotropy second invariant through the replacement of C�2 by the function
1:92=(1 + 0:7AA0:52 ), where A=1:0− 9:0=8:0(A2 − A3) and A3=8:0 bij bjk bki, and making C�1
equal to unity instead of the standard value C�1=1:44. The term A in the previous equations
can provide a measure of the anisotropy of the �ow. This parameter will always assume
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values between zero and unity, the anisotropy being more pronounced in the regions of lower
values of the above-mentioned A parameter. Although the e�ect of the turbulent kinetic energy
production, P, is diminished through the decrease of the constant value of C�1 (from 1.44 to
1.0, as mentioned above) and the e�ect of anisotropy is now involved through the function that
replaced C�2, this approach is still based on the concept of the standard model. Moreover,
such approach maintains the mean strain a�ecting the dissipation rate through the term P,
similarly to what is used in the transport equation for the turbulent kinetic energy, k [1].
In the present study, and based on the physical reasoning concept that anisotropy in the

large-scale eddies controls the rate of turbulence energy transfer from large to small dissipa-
tive eddies as explained before, a new set of coe�cient functions is proposed. In this new
approach the constant C�1 is replaced by the coe�cient function C�1A2 and C�2 is kept con-
stant. The constant C�2 has taken values between 1.8 and 1.92 based on calculations over data
on decaying isotropic turbulent �ows. Herein, the value of C�2 was kept at 1.92. Based on
experimental data [27], the value of C�1A2 was determined to be between 1.506 and 1.534.
Moreover, C�1 can be determined from C�1=(1+(C�2−1)=(P=�))=A2, which leads to a value of
C�1 between 3.63 and 3.80. Nevertheless, more accurate results were obtained in the present
study by tuning the value of C�1 to 2.88.
The term A2P replaces that of P in Equation (5) and becomes dominant in regions of

anisotropic turbulence. In such regions, the anisotropy feature of the turbulent �ow strongly
accelerates the transfer process rate of the turbulent kinetic energy from the mean �ow large
eddies to the small dissipative eddies, when compared to the transfer rate of isotropic turbu-
lence. It is therefore expected that this turbulence feature will be more accurately predicted
with such approach, A2P, for the source term of the � transport equation. On the other hand,
in �ow regions where turbulence is predominantly isotropic, i.e. regions of slower energy
transfer rate, the function A2 of the term A2P in Equation (5) becomes insigni�cant. There-
fore, the term C�2� in that equation, which acts as a sink of the dissipation rate of �, becomes
dominant and, consequently, the transfer process of the turbulent kinetic energy gets slower.
Hence, in regions of isotropic turbulence, the present approach is also expected to yield results
as accurate as those yielded by the isotropy-based k–� turbulence model.
Wall boundary conditions: The above second-moment closures are only applicable to high-

Reynolds number �ows and require the use of a sub-model covering the near-wall region.
In regions su�ciently close to the wall, generation of k and its dissipation rate are assumed

to balance, this balance yielding the � wall boundary condition [1].
The standard log-law for boundary layers [1] is used for the grid nodes next to the solid

walls for the velocity components parallel to the walls, for the turbulent kinetic energy and
for both the normal and shear stresses.
Typical values of the log-law local Reynolds number—dimensionless distance of the nearest

grid node to the wall—ranged between 16 and 30 for case 1 (grid 96× 68), and between 19
and 40 for case 2 (grid 48× 52).

3. RESULTS AND DISCUSSION

In the present work two di�erent geometries with isothermal, turbulent and swirling �ows are
numerically simulated.
Case 1: The �rst geometry studied herein—case 1—is sketched in Figure 1 and corresponds

to the dump combustor for which �ow experimental data exist [15]. The considered domain is
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x / H = 0.38 x / H = 18

Computational
domain

H = 25.4 mm

R0 = 50.8 mm ri

x

Figure 1. Sketch of the studied dump combustor geometry: case 1 (Reference [15]).

a portion of a cylindrical combustor chamber. The inlet pipe has a radius of R0=50:8mm and
the combustor chamber has an inner radius of Ri=76:2 mm and a total length of 1850 mm.
The inlet centreline velocity has a value of Uref =19:2m=s. Three di�erent swirlers of the type
of constant angle and axial �ow yield �ows with swirl numbers of S=0:0; 0:3 and 0.5. The
case corresponding to S=0:5 was chosen to be simulated in present study as it is the most
anisotropic �ow and, therefore, the most appropriate for RSTM validation purposes.
Grid independence tests were performed by using two sets of grids comprising 48× 34

nodes and 96× 68 nodes, respectively, in the axial and radial directions. The results showed
no noticeable di�erences. Therefore, only the predictions with the 96× 68 grid are displayed.
The non-uniform grid was made particularly denser near the inlet and close to both the burner
lip and the wall.
As the purpose of the present study is to assess the accuracy of the Reynolds stress turbu-

lence model, the domain was limited to the region between the axial stations x=H=0:38 and
18, where H=Ri −R0, as indicated in Figure 1. Those stations are the �rst upstream and the
last downstream positions at which measurements for U;V;W; u′2; v′2; w′2; uv and uw are
available. The experimental pro�les of those quantities are used to specify the inlet and outlet
boundary conditions. Additionally, v′w′ is assumed to be zero at both the inlet and the outlet.
The decision to use the available experimental data as inlet and outlet boundary conditions
was taken in order to minimize the sources of possible errors in the predictions, similarly to
what has been done by other authors that have predicted this type of �ows (e.g. References
[28–31]).
Three models were chosen for the simulation of this case study, in order to evaluate and

compare the performance of di�erent pressure-strain and turbulent kinetic energy dissipation
rate approaches. The chosen models are: the standard RSTM (LRR) with the constants of
Reference [23] (model 1 hereafter), the standard SSG model (model 2 hereafter) and the
standard SSG model together with the new proposed transport equation of �, Equation (5)
with the modi�ed source term, hereafter designated as model 3.
Computational results are compared against experimental data, in Figures 2–4. Generally,

an overall agreement between the predictions and the experimental data for mean velocities,
normal stresses and shear stresses is observed. However, model 3 allowed for improvements
in the results accuracy, as explained below.
Measured and predicted non-dimensional radial pro�les of the mean velocity components

are compared in Figure 2. The experiments evidence the trend of the �ow to �atten rapidly
along the main �ow direction for all the velocity components.
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Figure 2. Radial pro�les of the non-dimensional mean velocity components.

For the axial velocity component (see Figure 2(a)), U=Uref , it is clear from this �gure that,
for stations x=H=10 and 15, model 3 exhibits a much better performance than the other two
models in predicting the above-mentioned �attening trend, particularly at the near wall region
and at the near axis region.
For the radial velocity component (see Figure 2(b)), V=Uref , the reasoning is similar, par-

ticularly for the downstream region (x=H=10), where models 1 and 2 even fail to predict the
right sign of this velocity component in opposition to the predictions yielded by model 3.
As far as the tangential velocity component (W=Uref ) goes (see Figure 2(c)), the comparative

performance of the used models is analysed by assessing the predictions and comparing them
with the experiments in two distinct �ow regions. In the outer �ow region (ri=R0¿1) the
three models predict the experiments with similar accuracy. However, for the inner �ow region
(ri=R0¡1) and for the downstream region (x=H=10 and 15) the velocity pro�les predicted by
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Figure 3. Radial pro�les of the non-dimensional normal stresses components.

model 3, although with values slightly underestimated, reproduce the experimental �attening
trend with much more evidence than those yielded by models 1 and 2.
Summing up, model 3 predicted the experiments more accurately than the two other models,

not only near the wall and near the axis where swirling e�ects are strong and anisotropy
predominates, but particularly in the downstream region of the �ow where isotropy may be
the predominant feature of turbulence. This means that the proposed equation for the transport
of �—Equation (5) with the modi�ed source term—yields better results than those previously
reported in the open literature.
Figure 3 displays the radial pro�les of the non-dimensional normal stresses, u′2=V 2ref ; v′2=V

2
ref

and w′2=V 2ref , at di�erent stations x=H along the axis. All the used models yielded results

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:133–150



142 P. LU AND V. SEMIÃO
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Figure 4. Radial pro�les of the non-dimensional mean shear stresses components.

exhibiting, in general, a good agreement with the experimental trends. The di�erences are
mainly referred to the magnitude of the predicted values of the stresses. Model 3, again,
performed better than the other two models in predicting all three normal stress components.
In the upstream region of the �ow (x=H=1), where anisotropy is the predominant feature of
turbulence as showed below, model 3 predicted a turbulence intensity higher than the other
two models. In the downstream region of the �ow, the production of the kinetic energy tends
to be very small, due to the �attening e�ect of the mean velocity pro�les. Additionally, in this
region, as the dissipation rate of the turbulent kinetic energy is mainly isotropy-controlled, the
last term of the source term of the modi�ed equation (5) will dominate and the three models
behave similarly.
In the near centreline region and in the region close to wall, all used models yielded

predictions with a certain degree of inaccuracy. For u′2=V 2ref and v′2=V
2
ref , the models fail to

predict the very rapid decay of the normal stresses in the region close to the wall, although
model 3 approaches more closely this trend. For v′2=V 2ref and w′2=V 2ref , the measurements indicate
an increase of the normal stresses in the near centreline region, but none of the models could
reproduce this pattern. Other authors (e.g. Reference [28]) have already experienced this �aw
of the RSTM.
Figure 4 depicts the radial pro�les of the non-dimensional shear stresses, u′v′=V 2ref and

u′w′=V 2ref , at di�erent axial stations. Model 3 yielded results in better agreement with the
experimental trends than the other two models. Indeed, the shear stress values of u′v′=V 2ref in
the outer region of the �ow were over-predicted at x=H=10 by both model 1 and model 2
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Figure 5. Sketch of the geometry for case 2 (Reference [16]).

and at x=H=15 by model 1. For the shear stress u′w′=V 2ref , again, model 3 performs better
than the other two models at x=H=15. At the other axial stations, the three models performed
similarly yielding a fairly good agreement between the predictions and the measurements at
the inner region of the �ow (except model 1 at x=H=1), and under-predicted the value of
the shear stresses at the outer-region of the �ow.
It is also clear from the previous analysis that, at least for this case study, the predictions

are much more sensitive to the dissipation rate equation of the turbulent kinetic energy than to
the pressure-strain model. In fact, model 2 exhibited a pale improvement when compared with
model 1 (e�ect of the pressure strain modelling), but model 3 yielded much better results than
those of model 2 (e�ect of the � transport equation). Another point that deserves attention
is that model 2 and model 3 performed fairly well in the near wall region, although those
models made no recourse to wall-re�ection correction terms. This fact encourages the use of
the SSG model in complex geometries with turbulent swirling �ows.
Case 2: The second geometry studied in this work—case 2—is an annular one and is

sketched in Figure 5. The �ow inside it is a con�ned swirling one and experimental data for
this �ow exist [16]. This case was previously selected by other authors [29–31] to demonstrate
the limitations of the k–� model, in so far as they exist, and the superiority of the RSTM.
The �ow consists of a central non-swirling jet with a diameter of 8:7 mm and an annular
strong swirling jet entering a uniform diameter chamber with an inner radius of R=62:5mm.
The rotation motion is induced by a swirler with 15 �xed-vane blades, with a vane angle of
66◦, which produces a �ow with a swirl number of 2.25.
Predictions with a grid comprising 48× 52 nodes, respectively, in the axial and radial

directions, are presented. Previous grid independence tests revealed no marked di�erences.
The grid was made particularly denser near the inlet and close to the wall, similarly to
case 1.
Experimental data values [16] are referred to the mean axial and swirl velocity components

U and W and to the normal stresses u′2 and w′2 at di�erent axial stations x=D, where D is the
diameter of the central jet. As mentioned before the main purpose of the present work is to
assess the potential of the new proposed turbulence model, and therefore, boundary conditions
at the inlet were speci�ed using the experimental values at x=D=1. The radial component of
the normal stress, v′2, was set equal to the tangential component of that stress, w′2. The three
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Figure 6. Mean axial velocity component decay along the symmetry axis.

shear stress components, and following the suggestion made in earlier simulations of the same
�ow [29–31], were assumed to be zero. In order to minimize the sources of possible errors in
the predictions, the outlet boundary conditions were prescribed with the available experimental
data at the last station, x=D=40. In fact, as showed by Reference [29] in their predictions,
although the central jet prevents the onset of a reversal �ow along the centreline beyond the
measurement section that extends up to x=D=40, the �ow is subcritical there and a developed
�ow boundary condition at the exit pane is clearly inappropriate.
The same three models used for case 1 were chosen for the simulation of case 2, in order to

evaluate and compare the performance of di�erent pressure-strain and turbulent kinetic energy
dissipation rate models.
Predicted results and experimental data for the mean velocity components U and W and

for the normal shear stress components u′2 and w′2 are compared in Figures 6–8.
Figure 6 shows the decay of the axial component of the mean velocity at the symmetry

axis, for the three tested RSTM models. As it can be seen, the three models could reproduce
the main trend of the decay of the referred velocity evidenced by experiments. Moreover,
models 2 and 3 yielded almost coincident predictions—the di�erences are not detectable—
and in very good agreement with the experimental values. Comparatively, model 1 yielded
predictions not as good as those mentioned above. In fact, results yielded by model 1 exhibit
a slower decay of the centreline axial velocity in the region 0¡x=D¡7 and a faster decay of
the referred velocity at the region 7¡x=D¡20. This means that the SSG model appears to
be more accurate in the prediction of the centreline axial velocity when compared with the
standard LRR model.
The predicted pro�les for the axial and tangential velocities at di�erent axial locations are

compared with the experiments in Figure 7. Although the agreement is in general fairly good,
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Figure 7. Comparison of radial pro�les of U and W velocity components at
di�erent axial station against experimental data.

some discrepancies between the predictions and the experiments can be observed. As far as
the mean velocity components go, models 2 and 3 yielded almost the same predicted values.
This means that for the present case the anisotropic model for the dissipation rate of turbulent
kinetic energy has a pale in�uence in the results.
In more detail, Figure 7 also shows that there are some small di�erences in the values pre-

dicted by model 1 and those predicted by the two other models at the region 0¡ri=R0¡0:6,
particularly for the upstream region. Models 2 and 3 yielded slightly better results than
model 1, i.e. SSG model appears to perform slightly better than the standard LRR model
for strongly swirling �ows.
The predicted axial and tangential components of the turbulent normal stress are plot-

ted in Figure 8 together with the corresponding experimental data. As for the mean veloc-
ities, for the normal stresses models 2 and 3 also yielded practically the same predicted
values. This con�rms the anisotropy is not marked in this strongly swirling �ow and, there-
fore, it has no signi�cant in�uence in the dissipation rate of the turbulent kinetic energy,
as it is explained below. It should be mentioned that model 1 yielded predicted values of
the normal stresses much higher than both the experimental values and those obtained with
the other two models, particularly for the downstream region of the �ow, i.e. x=D≥5. This
strongly suggests that, and simultaneously con�rms the conclusion above drawn, for strongly
swirling �ows the non-linear pressure strain model SSG is more accurate than the LRR
model.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:133–150



146 P. LU AND V. SEMIÃO
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Figure 8. Comparison of radial pro�les of normal stresses components at di�erent
axial station against experimental data.

In conclusion, from the analysis of the results for case 2 it is clear that for strongly swirling
�ows, and in opposition to the conclusions drawn for case 1, the predictions are much more
sensitive to the pressure-strain model than to the � transport equation. This means that the
SSG model tends to perform better than the standard pressure-strain model, the LRR model,
although the latter includes wall-re�ection correction terms in its formulation.
Cases comparison: Figure 9 displays the contours of the parameter A—a measure of the

anisotropy degree of the �ow, as mentioned earlier—for both studied �ows. As it can be
observed, for case 1 the �ow is highly anisotropic in the upstream region of the �ow domain
(x=H¡6) due to swirling e�ects. In opposition, for case 2, almost all the �ow domain is
predominantly isotropic—except close to the inlets—as the very high swirl number induces
a rapid return to isotropy of this �ow. These characteristics of both �ows explain the results
obtained. In fact, for case 1, for which anisotropy is predominant in the upstream region
of the �ow domain the new � transport equation produces a considerable improvement in
the accuracy of the results, as anisotropy was considered through the source term of such
equation. On the other hand, for case 2, where isotropy is predominant almost all over the
�ow domain, the pressure-strain correlation term is the one that produces the improvement
in the accuracy of the results. This is due to the fact that all the tested turbulence models
account for isotropic �ow featuring in the source term of the � transport equation.
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Figure 9. Contours of anisotropy parameter A for the two studied cases.

4. CONCLUDING REMARKS

In the present work, an improved anisotropic dissipation rate model for the turbulent kinetic
energy, to be used together with the non-linear pressure-strain SSG model, is proposed. The
performance of that new proposed model in predicting con�ned swirling �ows was analysed
and compared to that of the standard � transport equation and di�erent pressure-strain cor-
relation models (LRR and SSG). From the predictions obtained for two isothermal, swirling
�ows, one weakly swirling (case 1—swirl number of 0.5) and another strongly swirling
(case 2—swirl number of 2.25), the following conclusions are drawn.
The SSG model performs very well in the vicinity of walls in both �ows, in spite of the

fact that it does not contain wall-re�ection correction terms in its formulation.
The predictions for case 1 are much more sensitive to the � transport equation than to the

pressure-strain correlation model. The new proposed � transport equation—with the modi�ed
source term running �(2:88A2P − 1:92�)=k—together with the SSG model, exhibit a strong
improvement in accuracy in the predictions for this case study.
All the used models fail to reproduce accurately the experimental trend of the normal

stresses to increase their magnitude towards the centreline in case 1.
The predictions for case 2 are much more sensitive to the pressure-strain model than to

� transport equation. The SSG model exhibits a very good behaviour in the predictions of
this case study, when compared with the standard pressure-strain model, LRR that comprises
wall-re�ection correction terms.
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NOMENCLATURE

A Parameter of anisotropy intensity
A2 Second invariant of anisotropy
A3 Third invariant of anisotropy
bij Reynolds stress anisotropic tensor
C1 LRR model constant and SSG model constant
C2 LRR model constant and SSG model constant
C3 SSG model constant
C4 SSG model constant
C5 SSG model constant
C∗
1 SSG model constant
C∗
3 SSG model constant
C ′
1 LRR model constant
C ′
2 LRR model constant
Cij Convection term of Reynolds stress transport equation
C� Model constant for the � transport equation
C�1 Model constant for the � transport equation
C�2 Model constant for the � transport equation
Cs Di�usion term model constant
C� LRR model constant
Dij Di�usion term of Reynolds stress transport equation
fx;y Wall correction functions for LRR model
k Turbulent kinetic energy
nl; i; j;m Unit vectors in the respective directions
p pressure
p′ pressure �uctuation
P turbulent kinetic energy production
Pij production term of Reynolds stress transport equation
S Swirl number: S=

∫ R
0 UWr

2 dr=R
∫ R
0 U

2r dr
Sij mean strain rate tensor
Wij mean vorticity tensor
Ui; j; k mean velocity components in the respective space directions
u′i; j; k velocity �uctuation components in the respective space directions
u′iu′j Reynolds stresses
u′iu′ju′k third order correlation for velocity �uctuations
xi; j; k space directions
xn axial distance to the wall
yn radial distance to the wall

Greek characters

�ij Kronecker operator
� rate of dissipation of k
�ij dissipation term of Reynolds stress transport equation
�ij pressure strain term of Reynolds stress transport equation
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�ij;1 return to isotropy term in the pressure strain model
�ij;2 rapid term in the pressure strain model
�ij; w wall correction terms
�1;2ij; w wall correction terms to �ij;1 and �ij;2
� Von Karman constant
� viscosity
� density
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